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SECTION I

INTRODUCTION

An example of an important application of three-dimensional Euler equation

solutions on dynamic grids is that of transonic flow about non-stationary

stores. Unsteady aerodynamic information is extremely difficult and costly to

obtain in wind tunnel experiments, particularly in the transonic regime.

Consequently, it is important to know when steady-state, quasi-steady, or true

unsteady aerodynamic information is required. Computational fluid dynamics

(CFD) has matured to the point where it can be used to assist in deciding the

conditions for which steady or unsteady information is needed, as well as being

itself a source for providing such information.

To compute the flow of a store released from an aircraft, it is desirable

to solve the unsteady Euler equations on a grid that moves with the store along

its trajectory. The purpose of this paper is to solve the three-dimensional

unsteady Euler equations on a time-dependent grid. The computations presented

here are for bodies whose motion is prescribed. As the solution advances in

time, body motion could be determined from the Euler equations by using force

and moment coefficients obtained from the Eulr solution in the dynamic equa-

tions of motion for the body to determine the trajectory of the body. The

objective of this report is to present and verify dynamic-grid Euler equations

computations.

The Euler equations solution method used is similar to that presented by

Janus, Reference 1. It is a finite volume, flux-vector split, second-order

explicit scheme, that can use local time stepping with CFL_<2 for steady-state

computations, Reference 2. The flux vectors at cell faces are determined

differently in the present method. In References 1 and 2 the flux vectors at

cell faces depend on a cell face eigenvalue that was determined from informa-

tion resulting from averaging dependent variables on either side of the cell

face. Due to the splitting, each flux vector is the sum of three subvectors,

each of which has an eigenvalue as a coefficient. The cell face eigenvdlue,

computed as described above, was used to compute a flux vector; however, the

remaining portion of the flux vector was computed with information from the

- - Ir | i . . . . . . .. . . . S " , *"



appropriate direction as dictated by the sign of the eigenvalue. In the

present method, each subvector of a flux vector is computed on either side of a

cell face by extrapolating the dependent variables from either side of a cell

face. An eigenvalue on either side of a cell face is computed in like manner.

The flux vector at a cell face is then formed by summing the subvectors on

either side of a cel 1 face by appropiately taking into account the sign of the

eigenvalues. This method requires less storage and executes more quickly than

the previous. It also totally eliminates upstream propagation of information

in supersonic regions. Experience with this technique has shown that the

ringing downstream of shocks characteristic of the previous method is greatly

reduced. . disadvantage of the method is that in practice it frequently

requires a slightly lower CFL number for stability than the previous method.

Characteristic variable boundary conditions (Reference 1) are used on all

boundaries with the exception of the reflection plate used in the moving store L

calculations. On the reflection plate, reflection plane boundary conditions

are used.

2
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SECTION II

ALGOR ITHM

1. BASIC EQUATIONS

The conservation law form of the Euler equations in Cartesian coordinates

x, y, and z is 
a

where

[P - pu, Pv pw, el T

2T

9 [Pv, puv, PV +P, Pvw, v(e+p)jT

h = pw, Puw, Pvw, PW2 + P, w(e+p)] T

P ( Y -1)[e - (

Using time-dependent curvilinear coordinates defined by

E- C(x, Y. Z, t)

n rn(x, y, z. t)

c (x, y, Z, t)

T
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Equation (1) may be transformed to (Reference 3)

Q . F . a G . H .
at a~ a~(2)

where

Q - J[P. pu, ov. w ]

FJ[pU, puU + xp, PvU P, p, 0wU + U(e'-p) -~j

G -JCPV, PuV + n P p* + n* P. p' + n P, V(e+p) n npjT

x y z

J x x(ynz c z n - y(Xnz - znx C +z Cx ny -yr

nC - (z-g Y)ZC l J-1N

Cx J-(r&z - Cn CynJ- (21z-KS)

-1 -1 -

' J1 (x Eyl-y~xn) Ut T Y

U = u + v + n W + n

x y z t

W U + v + w +~
x Y z t
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A finite volume discretization of Equation (2) balances the increase of

the conserved quantity in a computational cell, or volume, with the flux of the

quantity through the surface of the cell. Figure 1 depicts a portion of the

computational domain with a typical cell labeled. Assuming the dependent

variables are constant in the interior of cell i, j, k, and that the flux

vectors F, G, and H are constant over the constant k , constant 7 and constant

surfaces of the cel 1, respectively, an explicit discretization of Equation (2)

is

n+1 n nf n~~A ~1 -(QI j ,J,k) Ona; (F I F  ,j,) ancAT."i . ,k 1-7
. G

n
_ H

n
(3)

2
" (n I1,k 

A  { A  (Hn' la- nH
•  
-1

This can be rewritten as

6Q. 6 G 6H-. __ . j . _k - 0 (4) -
IT AE n L6C

Note that any algorithm written in this form is conservative as long as the

fluxes are single-valued functions of the cell faces.

'7

j +:

j,+, + 1,

j, k j, k

kk

j, -, k ''

= Constant Plane

Figure 1. Computational Grid
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2. FLUX SPLITTING

Hyperbolic partial differential equations, such as the Euler equations, are

characterized by the existence of a limited domain of dependence. The solution

at a point does not depend on every other point in the field; this means that

information travels only in certain characteristic directions. Numerical

schemes intended to solve hyperbolic equations are usually enhanced by insuring

that the numerical method propagates information in the direction specified by

the partial differential equation. This can be done by using an upwind method,

or one in which the difference operator is taken in the direction from which

the information should come. Stability properties are often improved by

upwinding, and it is usually unnecessary to add smoothing terms or artificial

viscosity to an upwind method.

The three-dimensional Euler equations, Equation (2), are a hyperbolic

system of five equations and hence have five characteristic velocities in each

of the three spatial directions. These characteristic velocities are deter-

mined from the quasilinear form of Equation (2),

N AQ- BN  - C Q - 0 (5)

where the matrices A, B, and C are given by

A 3aF B-3, C .-

The eigenvalues of A are the characteristic velocities in the direction; the

eigenvalues of B are the characteristic velocities in the 77 direction; and

similarly the eigenvalues of C are the characteristic velocities in the

direction.

Since F, G, and H are identical except that where appears in F, n will

apl)ear in G and will appear in H, extra writing can be avoided by letting K

represent either F, G, or H, and k represent either t, ij, or .

Then define

K (6)

6
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which corresponds to A, B, or C depending on the meaning of K. The eigenvalues

of the matrix K are

1 2 3  %ku 
+kv + k

Ak " A k ,k " k u kzw + -

4 _ + cIVkj B + c(k2 + k2 + k2) (7)
k k k y z

5
'k - Bk - cIki

where c is the speed of sound.

It is possible to split the flux vector K into three parts, one corre-

sponding to each of the distinct eigenvalues of K given above. (For the

details of this splitting, see Reference 1). The flux vector K is then written

as

K- A KI AklC4 ASK 5  (8)

where

P P

PU Pu+pckx

K - J -vK !
4 2Y pv+pck y

pw pw+po

(u+V2+W e+p+pock

2 k ". .. ""

7
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'I.

pu-pck x
(9)

K +P-peel,,.k

5 2Y ~VCy

pw-pck

and
k k k

k 1~
2, 2, 22(k +k +k )

k
Y Vkl I.

a.

k =.

z Ink I

- kxu + k v +k w.

The sign of Ain Equation (8) determines from which direction information

should be used to determine the corresponding portion of the flux, Kk.

3. NUMERICAL IMPLEMENTATION

For the finite volume discretization, Equation (4), the dependent variables

are stored at cell centers, but the fluxes are required at cell faces. There-

fore, some type of interpolation or extrapolation must be used to determine the

fluxes. The signs of the eigenvalues at the faces should determine the direc-

tion of the extrapolation to be used, but note that there is still some

ambiguity, since the eigenvalues themselves may be calculated in several .

different ways at cell faces. Whitfield and Janus (Reference 2) computed the

eigenvalues at d face from the average of dependent variables in the two cells

sharing the face. The present scheme uses a different approach. The scheme

reported here calculates a set of left eigenvalues, A(QL), and left split

8
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fluxes, Kt(QL) from dependent variables extrapolated from cell centers left of

the face, QL, and it also calculates a set of right eigenvalues,A(QR), and

right split fluxes, Kz (QR), from dependent variables extrapolated from cell

centers right of the face, QR. The flux at the face is then set to

K(QL' QR) " [ [_( A Q) At(L )ZkL
L-1,4,5

l(AE(QR) - IA2(QR)I)K (QR :(10)

Note that if a left and right eigenvalue have different signs, then the corre-

sponding split flux may be either summed from both sides, if the sign changes

from positive to negative, or from neither side, if the sign changes from

negative to positive.

The extrapolation of dependent variables is chosen such that the algorithm

is a finite volume version of the Warming-Beam upwind scheme, Reference 6.

This predictor-corrector scheme is second-order accurate in time and space, and

is stable for CFL numbers less than two. Three flux balances are performed,

requiring two different dependent variable extrapolations. The one-point

extrapolation in the t direction is

-L - nl
+1,J ,k " i,J,k

2'

The two-point extrapolation in the E direction is

^Ln n"
Q 2Q,-
+1, 2k J,k - ql-l,J,k

(12)

Rn n
Q 2 Qf ~ Qf
+2' i+1,j,k i+2,J,k

i j vk

9



Similar extrapolations are used in the q and r directions. Taking atA ll'z A,
the predictor is

~i,j,k ~i,jgk -Al ,Jk(FPI 60 +a6H (13)

where
F L F (Q I 1 1R

and 6G. and A are evaluated simil arly.k

The corrector is written as

n*1 n Ir J,k A

Q1,j k q 1,jtk - 2 tIPr +*G+6k

(14)

2.11

where

A^ AL A R A L AR
F7 *F(Q I Qr q .~1-1,j~k. 14!g.ICk 1-!Jk 12

A A

and 6G. and 6Hsimilarly are flux differences using two-point dependent3
variable extrapolations. 6Fi. 6G., and 6Hk represent differences of fluxes1 3 k
evaluated using a one-point extrapolation of the predicted variables.

The time step I-ri,,j,k is given by

i~jI ,r J&O * ,jk 1,1,k ijk
i,.j~k n~~ nT . ~t A

(15)

where

kr CFL,&k
i,J~k maji(16) '

10



for k = , , and r. When time accuracy is not required (steady state) the

maximum time step for each individual cell is used where CFL _ 2. This is done

to accelerate convergence by enabling every cell to advance in time as fast as

possible. The edge cells (those in the domain adjacent to a boundary) are only

first-order accurate and stable for a CFL < 1, consequently the time steps for

these cells are reduced accordingly. In situations where a time accurate

solution is desired, such as in some dynamic grid applications, the minimum of

all the local time steps is selected for use at all cells. This enables the

solution to advance at the same time in every cell, although restricting the "..

time step to that of the slowest cell. This method of selecting the time step

is referred to as minimum time stepping.

4. BOUNDARY CONDITIONS

Consistent with the impetus leading to the flux split form of the Euler

equations, i.e., honoring propagation directions, a set of boundary conditions

has been developed, referred to as the characteristic variable boundary condi-

tions (CVBC), Reference 2. The CVBC presented in Reference 2 are formulated

for stationary grids. Some minor adjustments to these equations are required

to establish a valid set of CVBC for the dynamic grid case.

The characteristic variables are constructed, Reference 1, using the matrix

of eigenvectors of the flux Jacobian and the non-conservative dependent vari-

able vector. Since in the dynamic grid derivation neither the eigenvectors or

dependent variables are altered, Reference 1, the characteristic variables

remain unchanged. Consequently the equations corresponding to the cases

described in Reference 2 are all valid except for the case of the impermeable

surface. This case will be reformulated for the dynamic grid application.

The impermeable surface case is characterized by the first three eigen-

values equal to zero, the fourth positive, and the fifth negative. For this

V.ii1



case no flow through the surface must be specified, replacing one of the
characteristic variable relation equations yielding

[k (P - P)" kY - "k1 - [,k(p - IF) vk 7 3,. (17a)
o 0

[k7 (p- P 2 kz U k x W]b  [ky(P - 2 ) k zu kx) r  (17b)
CO CO

-k z ) -(o -P2 + kyu k- l (170 %

k x u k v ktw b *I 0 (17d)

(k (ocu k Y k - EPIVI (kku k v "z* ] !

0 00

(17)

where the r subscripts refer to a reference value, which is selected as the
center of the first cel 1 from the boundary, and the b subscripts refer to
boundary values. Solving Equations 17de for Ap yields

- - - -k + 4 Icwr (18a) SAp - Pb -Pr P 0 oeo(j x Ur + k y Vr +iz Wr + t,b ,18a

The other relations can be obtained by solving Equations (17a,b,c,d) simulta- Se

neously yielding

AUUb Ur A -18b)
xpc*

Avv - v -  .--k (l8c).."
b r Y P 0

IW Wb W .AL. (18d)

b r y PCo'"

00

AP (Ire)

0

The minus and plus signs in Equations (18a) correspond to the location of the

point r. If the point r is in the positive k direction from the boundary then
the minus sign is used, and if it is in the negative direction then the plus
sign is used.

12



SECTION III

RESULTS

Dynamic-grid computations were performed for the following configurations:

(a) plunging and oscillating airfoils, (b) plunging wings, (c) horizontally

launched missile (or store), and (d) vertically launched store from a reflec-

tion plate. The plunging airfoil and wing cases were run for the special case

of constant velocity plunge in order to check the dynamic-grid code. A con-

stant velocity plunge corresponds to a stationary solution at some particular

angle of attack. The constant velocity plunge solutions were compared with

steady-grid angle of attack solutions to insure that both solutions were iden-

tical, which they were. The same was done for the horizontally launched

missile. In one case the missile was launched into still air and then the

solution was compared with a solution for a stationary missile with the air

flowing past. These results were reported in Reference 1. The same numerical

experiment was also performed for a store in constant velocity vertical plunge .

and a stationary store at angle of attack. Again the solutions were identical.

The cases selected are the solution for an oscillating airfoil and the

solution for a vertically launched store from a reflection plate. The oscil-

lating airfoil was investigated because of the need to determine whether the

phase was being computed correctly. Experimental data are available for an

NACA 0012 airfoil, Reference 5, consequently this airfoil was selected. The

experiment consisted of the harmonic pitch oscillation of a NACA 0012 airfoil

about the quarter chord point. Figure I is the result obtained from the har-

monic oscillation using a reduced frequency of 0.2156 and oscillating 1 2.510

about a mean alpha of 0.0160 in a uniform Mach 0.755 flow. In an attempt to

isolate the phase shift of the lift curve, the normalized lift curves of the
numerical solution and experimental data, Reference 3, are shown in Figure 2.

It is evident from this figure that the correct phase is calculated. The lift

curves could not be directly compared because the numerical solution was

obtained using a rather coarse grid, consequently the resolution of the values

of lift and drag is not adequate.

13

- " " " -" -" • ," '.'- " .. . "- - -. ' -.-.-.- .- , '-.'.'-'- " , ' '."."-'" ".."i"."'." ,-U"



NACA 0012 AIRFOIL PITCH OSCILLATION

(M-.755. k-.2156, -2.49401012.5260)

NORMALIZED

ALPHA

NUMERICAL

SOLUTION

EXPERIMENTAL

1.5

0.5

0 -. 0 A_____

-1.5 _ _ _ _ _ _ _ _ _ _

0 1
,* pvl:T,.

Figure 2. Phase Shift (computed and experimental)

Finer grid steady-state solutions were obtained and compared to previous lift
and drag Euler solutions to make sure the present code produces acceptable
results for steady state. For example, for Moo = 0.8 anda = 1.250 the lift and

* drag coefficients are CL = 0.3796 and CD = 0.0211, whereas Anderson, Thomas,
and Van Leer, Reference 6, give CL = 0.3740 and Co = 0.0232.

The second case presented here is that of a store launched vertically from
a reflection plate. There appear to be no experimental data available for
stores moving in the vicinity of wings or other stores. There are steady-state
data available for a store located at various positions relative to a reflec-
tion plate, Reference 7. A grid with 60 points in the streamwise direction, 10
points in the radial direction, and 30 points in the circumferential direction
was used to obtain comparisons with the steady experimental data for Moo =1.41
and a zero store angle of attack with respect to the reflection plate. The

model geometry and grid are illustrated in Figure 3. A plane of symmetry

14
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perpendicular to the reflection plate and bisecting the store was taken advan-

tage of to half the size of the problem. A comparison is presented in Figure 4

of computed and measured store surface pressure distributions for a store nose

to reflection plate separation distance of 10.07 percent of the store length. .t

The dip in the Cp curve near the nose is due to the reflection of the shock

emanating from the store nose. Although viscous effects are not accounted for

on either the store or reflection plate in the present computations, good

qualitative agreement is obtained between the computed and measured steady-

state data.

BOUNDARY-LAYER BYPASS PLATE

MODEL and INTEGRAL STING

Figure 3 (a). Perspective View of Test Setup

.4.

Figure 3 (b). 60 X 10 X 30 Grid

I
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Figure 4. Computed and Experimental Store Surface Pressures

To help assess the importance of unsteady aerodynamics during store separa-

tion, dynamic-grid Euler solutions were obtained for the store discussed above

when launched from the 10.07 percent location in a direction perpendicular to

and avay from the plate. The procedure used for this calculation was to first

calculate the initial steady-state flow field with the store at the 10.07

percent location. The plunge velocity of the store away from the wall was then

suddenly set to a predetermined value and held constant thereafter. Present-

day store separation analyses typically use steady aerodynamics with a correc-

tion to the store angle of attack to account for the unsteady store motion.

The geometric angle of attack of the store, i.e. the pitch angle c in Figure

3(a), is incremented by the effective angle of attack due to the instantaneous
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store plunge velocity. In other words, if the free stream velocity is U. and

if the store has a plunge velocity of v, then the aerodynamic forces for this

case are usually obtained from steady aerodynamics with c incremented by ain

amount given by

Ou a tan- I L- (19)
U.n

To evaluate the validity of this approximation, a set of steady computations

were performed for a store with c=3 degrees and compared with two unsteady

dynamic-grid computations. For these calculations, a 60 by 10 by 15 grid was

used. The first dynamic-grid computation hadE =O degrees and a downward veloc-

ity such that the effective angle of attack due to the velocity, au , was 3

degrees. The second dynamic-grid computation had c =2 degrees and an effective

angle of attack increment due to velocity of one degree. As explained earlier,

the aerodynamics for both of these unsteady cases would normally be modelled in

a store separation analysis by a steady-state condition with C =3 degrees. A

comparison of the store pressure distribution along the 0=0 plane (see Figure

3) for the steady and two unsteady cases is presented in Figure 5. The reflec-

tion plate pressure distribution for the same conditions is given in Figure 6.

From the figures it is apparent that a noticeable difference does exist between

the steady and unsteady cases particularly during the initial moments of the

store motion. Note that the pressures on the store ahead of the reflected

shock for the au =1 degree case quickly become indistinguishable for the steady

results, but the au =3 case shows a larger difference. The greatest difference

in results is due to the position of the reflected shock. A comparison of

normal force and pitching moment coefficients is given in Figure 7. Figure

7(a) shows a spike in the normal force coefficient at the first time step which

is due to apparent mass effects from the impulsive change in velocity. This is

a transient effect which decays quickly. After the decay of the large tran-

sient due to store acceleration, a difference between the steady and unsteady -

cases still exists. This is due at least in part to the lag in the reflected

shock's positinn for the unsteady case.

17
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These results illustrate the difference in aerodynamic forces for a pres-

cribed store trajectory. It is possible to determine the store trajectory

using forces and moments obtained from the Euler equations, as Mastin did.

(Reference 8) To determine the significance of true unsteady aerodynamics

to store separation, the rigid body equations of motion should be solved

using both the unsteady and the steady aerodynamics so that the difference

in the store trajectory can be seen.

2.
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SECTION IV

CONCLUDING REMARKS

A method was presented for solving the three-dimensional unsteady Euler

equations on dynamic grids based on flux vector splitting. The equations were

cast in curvilinear coordinates and a finite volume discretization was used for

handling arbitrary geometries. The discretized equations were solved using an

explicit upwind second-order predictor-corrector scheme that is stable for a

CFL of 2. Characteristic variable boundary conditions were developed and used

for unsteady impermeable surfaces and for the far-field boundary. Dynamic-grid

results were presented for an oscillating airfoil and for a store separating

from a reflection plate.

It was determined that for the cases considered of stores separating from a

reflection plate that the unsteady aerodynamic forces on the store are signifi-

cantly different from forces obtained by steady-state aerodynamics with the ,

body inclination angle changed to account for plunge velocity.
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